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Abstract. We study computability and applicability of error bounds for a given semidefinite pro-
gramming problem under the assumption that the recession function associated with the constraint
system satisfies the Slater condition. Specifically, we give computable error bounds for the distances
between feasible sets, optimal objective values, and optimal solution sets in terms of an upper bound
for the condition number of a constraint system, a Lipschitz constant of the objective function, and
the size of perturbation. Moreover, we are able to obtain an exact penalty function for semidefinite
programming along with a lower bound for penalty parameters. We also apply the results to a class
of statistical problems.
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1. Introduction

Givenn+1 realm×m symmetric matricesB0,B1, . . . , Bn, a general semidefinite
programming problem (SDP) can be defined as

(SDP) minimize f (x)

subject to B(x)+ B0 > 0,

wherex ∈ Rn, f is a finite convex function,B(x) = ∑n
i=1(x)iBi . The inequality

B(x)+B0 > 0 means thatB(x)+B0 is positive semidefinite [1, 2]. Since numerical
methods for solving (SDP) in general can only provide approximate solutions, it is
important to study a perturbed problem

(P) minimize f (x)

subject to B(x)+ B0− P > 0,

whereP ∈ Rm×m is a symmetric matrix. For instance, ifP = εI with I the identity
matrix andε > 0, thenB(x)+ B0− P > 0 is equivalent toλmin[B(x)+ B0] > ε,
where ‘λmin’ indicates the smallest eigenvalue of a symmetric matrix, and a solution
to this perturbed problem is a suboptimal solution to (SDP).

In this paper we focus on computability and applicability of error bounds for
(SDP). We give error bounds for the distances between the feasible sets, the opti-
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mal values, and the optimal solution sets of (SDP) and (P) in terms of a Lipschitz
constant of the objective function, the size of perturbation, and an upper bound for
the condition number of the convex system that defines the feasible set of (SDP).
Finally, we use the results to obtain an exact penalty function for (SDP) along
with a lower bound for penalty parameters, and we apply the results to a class of
statistical problems.

The constraint system for (SDP) is equivalent to a convex inequality system.
Error bounds for convex inequality systems have received increasing attention in
the recent literature due to their important roles in the sensitivity analysis of convex
programming and the convergence analysis of iterative algorithms [3–6]. The paper
of Lewis and Pang [6] gives an excellent survey on this active research area, and in
which one can find many very interesting new results.

Throughout this paper, we use the following notation.
For any symmetric matrixP , let S(P ) be the feasible set of problem(P ), and

ρ(x, S(P )) = max{−λmin[B(x)+ B0− P ],0}. It is clear that S(P ) =
{x | − λmin[B(x)+ B0− P ] 6 0}. Let V (P ), X(P ), andXε(P ) denote the opti-
mal value, optimal solution set, andε-optimal solution set of(P ) respectively,
i.e., V (P ) = inf {f (x) | x ∈ S(P )} , X(P ) = arg min{f (x) | x ∈ S(P )} , and
Xε(P ) = {x ∈ S(P ) | f (x) 6 V (P )+ ε} , whereε > 0. We will use the vec-
tor 2-norm and the matrix 2-norm for a vector and a matrix respectively, which
are denoted by|| · ||. The unit ball inRn is denoted byBn, and the ball with
radiusγ is denoted byγBn. For any nonempty closed convex setS, let d(x, S) =
min{‖x − y‖| y ∈ S} denote the Euclidean distance from anyx to S. Given non-
empty closed convex setsS1 andS2 in Rn, the Hausdorff distance between them is
defined as

d∞(S1, S2) = max

{
sup
x∈S1

d(x, S2), sup
x∈S2

d(x, S1)

}
.

WhenS(P ) is nonempty, the condition number of the system−λmin[B(x) +
B0− P ] 6 0 is defined as [7, 8]

K(P ) = sup
x 6∈S(P )

d(x, S(P ))

−λmin[B(x)+ B0− P ] .

WhenK(P ) is finite, it is the smallest positive scalarτ such that the following
global error bound forS(P ) holds.

d(z, S(P )) 6 τρ(x, S(P )), for all z ∈ Rn. (1)

The above inequality bounds the distance between any pointz ∈ Rn andS(P )
in terms of a constant multiple of the residual functionρ(z, S(P )). WhenK(P ) is
‘small’, for anyz, d(z, S(P )) is small wheneverρ(z, S(P )) is small. The following
example shows thatK(P ) can be less than 1. WhenB(x)+B0 = 2x+1, it is easy
to see thatK(P ) = 1/2.
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2. Error bounds

We start with a general global error bound result for the following convex inequal-
ity system.

h(x) 6 0, x ∈ C, (2)

whereh : Rn→ R is a finite convex function, andC is a nonempty closed convex
set. LetS̃ be the set of solutions to the system (2), and suppose thatS̃ is nonempty.
The following proposition provides sufficient conditions under whichd(z, S̃) can
be bounded by the sum ofcomputableconstant multiples ofd(z, C) and[h(z)]+,
where[a]+ = max{a,0}.
PROPOSITION 2.1.Consider the system (2). Suppose thath is Lipschitz contin-
uous onRn with a Lipschitz constantl, and that there is a positive scalarγ such
that

d(z, S̃) 6 γ [h(z)]+ for all z ∈ C. (3)

Then

d(z, S̃) 6 (γ l + 1)d(z, C)+ γ [h(z)]+ for all z ∈ Rn. (4)

In particular, if there exists a unit vectoru ∈ C∞ and a positive scalarτ such
thath∞(u) 6 −τ−1, whereh∞ andC∞ denote the recession function ofh and the
recession cone ofC respectively, then (3) and (4) hold withγ = τ .

Proof. For anyz ∈ Rn but not inS̃, let zC be the projection ofz ontoC, andz̄
be the projection ofzC onto S̃. It is clear that

d(z, S̃) 6 ||z− z̄|| 6 ||z− zC|| + ||zC − z̄|| = d(z, C)+ d(zC, S̃).
SincezC ∈ C, by (3), we have

d(zC, S̃) 6 γ [h(zC)]+ 6 γ [h(z)]+ + γ l||z− zC|| = γ [h(z)]+ + γ ld(z, C),
where the second inequality follows from the fact thatl can be used as a Lipschitz
constant for[h(·)]+ onRn. Thus (4) holds. The last part follows from Theorem 2.3
in [9]. 2
REMARK . (a) Recently, Lewis and Pang have proved the existence of a global
error bound of the kind (4) under weaker assumptions than those in Proposition 2.1,
(Corollary 2(e) in [6]).

(b) A Lipschitz constantl for h(x) = −λmin[B(x)+B0] is√nmax16i6n{||Bi||F },
where|| · ||F is the Frobenious norm (Corollary A.5 in [10]).

Motivated by a class of practical problems in statistics [11], we make the fol-
lowing assumption on the constraint system. Under this assumption, Proposition
2.1 can be used to derive useful error bounds for (SDP).
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ASSUMPTION 1. There exists a unit vectorx̂ ∈ Rn such thatλmin[B(x̂)] =
τ−1 > 0.

−λmin[B(·)] is positively homogeneous and convex [10]. Assumption 1 implies
that the recession function−λmin[B(·)] of −λmin[B(·) + B0] satisfies the Slater
condition. ThusS(P ) is unbounded for any symmetric matrixP . For patterned
covariance matrix problems [11], one can easily find anx̂ satisfying Assumption 1
(see examples in Section 3.2). For a general semidefinite programming problem,
one can find an̂x satisfying Assumption 1 by minimizing−λmin[B(·)], if such an
x̂ exits.

A consequence of Proposition 2.1 is the following corollary which can also be
derived from Theorem 2 in [12].

COROLLARY 2.1. Suppose that Assumption 1 is satisfied. Then for any symmet-
ric matrix P ,

d (x, S(P )) 6 τρ(x, S(P )) for all x ∈ Rn.
In view of Corollary 2.1, we immediately have an upper bound for the Hausdorff

distance betweenS(P ) andS(Q) in terms ofτ and the distance betweenP andQ.

THEOREM 2.1. If Assumption 1 is satisfied, then for any symmetric matricesP

andQ,

d∞ (S(P ), S(Q)) 6 τ ||P −Q||.
Proof. It suffices to show thatd(x, S(P )) 6 τ ||P −Q|| for anyx ∈ S(Q). From

Corollary 2.1,

d(x, S(P )) 6 τρ(x, S(P )) = τ max{−λmin[B(x)+ B0− P ],0} .
As−λmin[·] is positively homogeneous and convex, andλmin [B(x)+ B0−Q] >
0, we have

−λmin [B(x)+ B0− P ] 6 −λmin[B(x)+ B0−Q] − λmin[Q− P ]
6 −λmin[Q− P ] = λmax[P −Q]
6 ||P −Q||.

It follows thatd(x, S(P )) 6 τ ||P −Q|| for anyx ∈ S(Q) and this completes the
proof. 2

A consequence of Theorem 2.1 on the optimal value of (P) is the following
proposition. Note that a finite convex function is Lipschitz continuous on any
compact set inRn [13, Theorem 10.4].
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PROPOSITION 2.2. If Assumption 1 is satisfied, then for anyP , Q with ||P −
Q|| 6 τ−1 and any bounded setS such thatX(P )∩ S 6= ∅ andX(Q)∩ S 6= ∅, we
have

|V (P )− V (Q)| 6 τLS+Bn ||P −Q||,
whereLS+Bn is a Lipschitz constant off onS + Bn.

Proof.Let x′ ∈ X(P ) ∩ S, x′′ ∈ X(Q) ∩ S, andx∗ ∈ S(Q) such that

||x′ − x∗|| = d(x′, S(Q)). (5)

By Theorem 2.1,||x′ − x∗|| 6 τ ||P −Q|| 6 1 and thusx∗ ∈ S+Bn. It follows that

V (Q) = f (x′′) 6 f (x∗) = f (x′)+ (f (x∗)− f (x′))
6 V (P )+ τLS+Bn ||P −Q||.

Similarly, V (P ) 6 V (Q)+ τLS+Bn ||P −Q||. The result follows. 2
An important class of problems in semidefinite programming are problems with

linear objective functions. Now we study this case and assume thatf (x) = cT x.
We first state the following lemma on the compactness ofX(P ). Its proof can be
easily derived from Theorem 27.1 in [13].

LEMMA 2.1. If f (x) = cT x > 0 wheneverB(x) > 0, then for any symmetric
matrixP , the solution setX(P ) of (P) is nonempty and bounded.

Since a linear functioncT x has a uniform Lipschitz constant||c|| for all bounded
sets, by Proposition 2.2 and Lemma 2.1, we have the following theorem.

THEOREM 2.2. If Assumption 1 is satisfied,||P − Q|| 6 τ−1, andf (x) = cT x
satisfies the conditions stated in Lemma 2.1, then

(a) for any symmetric matricesP andQ, |V (P )− V (Q)| 6 τ ||c||||P −Q||;
(b) for any symmetric matricesP andQ with ||P − Q|| 6 ε(4τ ||c||)−1, any

givenε > 0, and0< η < ε/2, supx∈Xη(Q) d(x,Xε(P )) 6 τ ||P −Q||.
Proof. Part (a) follows from Proposition 2.2 and Lemma 2.1. To prove (b), let

x ∈ Xη(Q). From part (a), we have

cT x 6 V (Q)+ η 6 V (P )+ τ ||c||||P −Q|| + η. (6)

Choosex∗ ∈ S(P ) such that||x − x∗|| = d(x, S(P )). By Theorem 2.1,

||x − x∗|| 6 d∞(S(Q), S(P )) 6 τ ||P −Q||.
It follows from (6) that

cT x∗ 6 cT x + ||c||||x∗ − x||
6 V (P )+ η + 2τ ||c||||P −Q||
6 V (P )+ ε,
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which means thatx∗ ∈ Xε(P ). Thus d(x,Xε(P )) 6 τ ||P − Q|| for all x ∈
Xη(Q). 2

In the rest of this section, we make the following assumption on the objective
function.

ASSUMPTION 2. f is continuously differentiable onRn, and there exist con-
stantsα > 0 andβ > 1 such that for allx′, x′′ ∈ Rn

f (x′)− f (x′′) > ∇f (x′′)T (x′ − x′′)+ α||x′ − x′′||β.
For example, a strictly convex quadratic function satisfies Assumption 2 with

β = 2 andα = λmin[∇2f (x)/2]. It is not difficult to verify that if f satisfies
Assumption 2, thenf has the following properties.

(i) f is strictly convex onRn.
(ii) For any nonempty compact convex setS, f is Lipschitz continuous onS

with the Lipschitz constantLS = maxx∈S ||∇f (x)||.
(iii) For any real numberγ , the set{x|f (x) 6 γ } is closed and bounded.
(iv) For any nonempty closed convex setS, arg minx∈S f (x) is a singleton.

LEMMA 2.2. For any z ∈ Rn, the set{x|f (x) 6 f (z)+ 1} is contained inz +
µBn, where

µ = max
{(

2α−1
)1/β

,
(
2α−1||∇f (z)||)1/(β−1)

}
. (7)

Proof. If there is anx̃ in {x|f (x) 6 f (z)+ 1}, but not inz + µBn, then by
Assumption 2,

1> f (x̃)− f (z) > ∇f (z)T (x̃ − z)+ α||x̃ − z||β. (8)

We may assume that∇f (z) 6= 0, for otherwise, we would have

1> f (x̃)− f (z) > α||x̃ − z||β > α (2α−1
)(1/β)β = 2. (9)

It follows from (7) and (8) that

1

||x̃ − z||β > α −
||∇f (z)||||x̃ − z||
||x̃ − z||β = α − ||∇f (z)||||x̃ − z||β−1

> α − ||∇f (z)||
µβ−1

> α − ||∇f (z)||
2α−1||∇f (z)||

= α − α/2= α/2.

Hence,||x̃ − z|| < (
2α−1

)1/β 6 µ, which contradicts the hypothesis thatx̃ 6∈
z+ µBn. 2
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THEOREM 2.3. Let z be a feasible solution of(SDP), andLµ̄ be a Lipschitz
constant off on z + (µ + 1)Bn, whereµ is defined by(7) in Lemma 2.2. If
Assumption 1 is satisfied andmax{||P ||, ||Q||} 6 1/2 min

{
τ−1, τ−1L−1

µ̄

}
, then

(a) |V (P )− V (Q)| 6 τLµ̄||P −Q||;
(b) ||X(P )−X(Q)|| 6 k||P −Q||1/β, wherek = (2τLµ̄α−1)1/β + τ(min{τ−1,

τ−1L−1
µ̄ })1−1/β.

Proof.Choosex′′ ∈ S(P ) such that||z− x′′|| = d(z, S(P )). By Theorem 2.1,

||z− x′′|| 6 d∞(S(0), S(P )) 6 τ ||P ||. (10)

As τ ||P || 6 1/2 andf is Lipschitz continuous onz + (µ+ 1)Bn with a Lipschitz
constantLµ̄, we have thatx′′ ∈ z + Bn ⊂ z + (µ+ 1)Bn and

f (X(P )) 6 f (x′′) = f (z)+ (f (x′′)− f (z))
6 f (z)+ τLµ̄||P || 6 f (z)+ 1.

From Lemma 2.2,

X(P ) ∈ z+ µBn. (11)

Similarly,X(Q) ∈ z+ µBn. Part (a) thus follows from Proposition 2.2.
It remains to prove part (b). Choosex′ ∈ S(Q) such that||X(P ) − x′|| =

d(X(P ), S(Q)). From Theorem 2.1 and the assumption onP andQ,

||X(P )− x′|| 6 d∞(S(P ), S(Q)) 6 τ ||P −Q|| 6 1. (12)

From (11) and (12),

||x′ − z|| 6 ||x′ −X(P )|| + ||X(P )− z|| 6 1+ µ, (13)

which implies thatx′ ∈ z + (µ+ 1)Bn. Hence,

α||x′ − X(Q)||β 6 f (x′)− f (X(Q)) (14)

= (f (x′)− f (X(P )))+ (V (P )− V (Q))
6 2τLµ̄||P −Q||, (15)

where (14) is from Assumption 2 and the optimality ofX(Q), and (15) is from
(12), (13) and part (a). Therefore,

||X(Q)−X(P )|| 6 ||x′ −X(Q)|| + ||x′ −X(P )||
6 (2τLµ̄α−1||P −Q||)1/β + τ ||P −Q|| (16)

= k||P −Q||1/β,
where (16) is from (15) and (12). 2



112 S. DENG AND H. HU

3. Applications

3.1. EXACT PENALTY FUNCTIONS

An important class of solution methods in optimization are exact penalty function
methods, which convert a given constrained nonlinear programming problem into
an equivalent unconstrained problem or into a problem with simple constraints.
But, if a lower bound of penalty parameters is unknown, then one must solve
a sequence of unconstrained problems with increasing penalty parameters and
this can cause ill-conditioning and numerical difficulties. Here we use the results
from Section 2 to obtain an exact penalty function and a lower bound of penalty
parameters for (SDP). We consider the following unconstrained penalty problem.

(Q) minimize h(x) = f (x)+ βmax{−λmin[B(x)+ B0],0} overRn,

whereβ > 0 is a penalty parameter. In view of Corollary 2.1, it is not difficult to
prove the following theorem, which gives a computable lower bound forβ.

THEOREM 3.1. Suppose thatf is convex and Lipschitz continuous onRn with a
Lipschitz constantL (e.g., an affine function or a convex piecewise linear function).
If Assumption 1 is satisfied andβ > τL, then a vector is an optimal solution of
(SDP) if and only if it is an optimal solution of(Q).

REMARK 3.1. Under different assumptions [14], Warga shows that there exist
constantsc andN such that the constrained problem: minimizef (x), subject to
g(x) = 0, x ∈ C̃ can be reduced to an unconstrained problem: minimizef (x) +
c|g(x)|1/N overx ∈ C̃, whereC̃ must be compact (see [14] for details). Due to
the special structure of our problem, we are able to obtain acomputablepenalty
parameterc > τL along withN = 1.

For example, consider the problem of minimizingf (x) = max{cT1 x+b1, c
T
2 x+

b2} subject to
∑2

i=1(x)iBi + B0 > 0, wherec1 = (3,1), c2 = (1,−2), b1 = 2,
b2 = 0,

B1 =
(

1 0
0 1

)
, B2 =

(
0 1
1 0

)
and B0 =

(
1 3
3 1

)
.

With the choice ofx̂ = (1,0), we haveλmin[B(x̂)] = 1 = τ−1. SinceL = √10,
for the unconstrained problem (Q), we can choose a penalty parameterβ >

√
10.

3.2. PATTERNED COVARIANCE MATRICES

Patterned covariance matrices arise naturally from statistical models in the phys-
ical, biological, psychological, and social sciences [11]. For example, in a model
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for meteorological measurements, the covariance matrix exhibits the pattern

61 =



a0 a1 a2 a3 · · · a2 a1

a1 a0 a1 a2 · · · a3 a2

a2 a1 a0 a1 · · · a4 a3
...

...
. . .

...
...

a2 a3 a4 a5 · · · a0 a1

a1 a2 a3 a4 · · · a1 a0


which is a circulant. In models for demography and migration, the covariance
matrices exhibit the patterns

62 =


a1 a2 a3 a4

a2 a1 a3 a4

a3 a3 a1 a4

a4 a4 a4 a1

 and 63 =


a1 a2 a2 a3 a4

a2 a1 a2 a3 a4

a2 a2 a1 a3 a4

a3 a3 a3 a1 a2

a4 a4 a4 a2 a1

 .

When the underlying distribution is not normal, one needs to find a positive semi-
definite matrix having the required pattern and closest to a given sample covariance
matrix [11]. For instance, if the covariance matrix has the pattern62, then one
needs to solve the following semidefinite programming problem

(SDP) minimize

∥∥∥∥∥
4∑
i=1

Bi(x)i − B̄
∥∥∥∥∥

2

F

subject to
4∑
i=1

Bi(x)i > 0,

whereB̄ is the given sample covariance matrix, and

B1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , B2 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 ,

B3 =


0 0 1 0
0 0 1 0
1 1 0 0
0 0 0 0

 , B4 =


0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0

 .
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In practice, some numerical methods actually solve the following perturbed
problem [11]

(P) minimize

∥∥∥∥∥
4∑
i=1

Bi(x)i − B̄
∥∥∥∥∥

2

F

subject to
4∑
i=1

Bi(x)i − P > 0.

Letting (x̂)1 = 1, and(x̂)i = 0 for i = 2,3,4, we haveB(x̂) = I and thus a
constantτ satisfying Assumption 1 isτ = 1. From Theorem 2.1, we know that
d∞(S(P ), S(Q)) 6 ||P −Q||, i.e., the Hausdorff distance between the feasible sets
of these problems is bounded by||P −Q||. Now let

D =


4 0 0 0
0 2 0 0
0 0 4 0
0 0 0 6

 and c̄ =


∑4

i=1 B̄(i, i)

2B̄(1,2)
2(B̄(1,3)+ B̄(2,3))

2
∑3

i=1 B̄(i,4)

 ,
we havef (x) = ||∑4

i=1Bi(x)i − B̄||2F = xT Dx−2c̄T x+||B̄||2F ,∇f (x) = 2Dx−
2c̄, and theα andβ satisfying Assumption 2 areα = 2 andβ = 2. Usingz = x̂
as a feasible solution to the unperturbed problem, one can easily verify that the
constantµ defined in Lemma 2.2 isµ = 8+ 2||c̄||, and the Lipschitz constantLµ̄
defined in Theorem 2.3 isLµ̄ = 120+ 26||c̄||. From Theorem 2.3, we know that if
max{||P ||, ||Q||} 6 (240+ 52||c̄||)−1, then

|V (P )− V (Q)| 6 (120+ 26||c̄||)||P −Q||
and

||X(P )−X(Q)|| 6 ((120+ 26||c̄||)1/2+ (120+ 26||c̄||)−1/2) ||P −Q||1/2.
In particular, for a suboptimal solution obtained by settingP = εI , if ε 6 (240+
52||c̄||)−1, then

|V (εI )− V (0)| 6 (120+ 26||c̄||)ε
and

||X(εI)−X(0)|| 6 ((120+ 26||c̄||)1/2+ (120+ 26||c̄||)−1/2) ε1/2.

Similarly, one can show thatτ = 1 for the patterns61 and63, and the bounds
for the feasible sets, optimal values, and optimal solutions between (SDP) and (P)
can be computed easily. For a general (SDP), one can find the bounds given by
Theorems 2.1, 2.2 and 2.3 from a vector satisfying Assumption 1 and a feasible
solution to the unperturbed problem.
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There are numerous sensitivity analysis results for convex programming focus-
ing on the existence of quantitative bounds. Because of the special structure of the
problems, we are able to compute these bounds in terms of the problem data. It
is not difficult to extend most of the results in this paper to convex programming
problems where recession functions associated with the constraint systems satisfy
the Slater condition.
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