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Abstract. We study computability and applicability of error bounds for a given semidefinite pro-
gramming problem under the assumption that the recession function associated with the constraint
system satisfies the Slater condition. Specifically, we give computable error bounds for the distances
between feasible sets, optimal objective values, and optimal solution sets in terms of an upper bound
for the condition number of a constraint system, a Lipschitz constant of the objective function, and
the size of perturbation. Moreover, we are able to obtain an exact penalty function for semidefinite
programming along with a lower bound for penalty parameters. We also apply the results to a class
of statistical problems.
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1. Introduction

Givenn + 1 realm x m symmetric matrice8y, By, ..., B,, a general semidefinite
programming problem (SDP) can be defined as

(SDP) minimize f(x)
subject to B(x) + By > 0,

wherex € R”, f is a finite convex functionB(x) = >;_;(x); B;. The inequality
B(x)+ By > 0 means thaB(x)+ By is positive semidefinite [1, 2]. Since numerical
methods for solving (SDP) in general can only provide approximate solutions, it is
important to study a perturbed problem

(P) minimize f(x)
subjectto B(x) + Bg— P > 0,

whereP € R™ ™ is a symmetric matrix. For instance if = €I with I the identity
matrix ande > 0, thenB(x) + Bg — P > 0 is equivalent tO.min[B(x) + Bo] > ¢,
where Anmin’ indicates the smallest eigenvalue of a symmetric matrix, and a solution
to this perturbed problem is a suboptimal solution to (SDP).

In this paper we focus on computability and applicability of error bounds for
(SDP). We give error bounds for the distances between the feasible sets, the opti-
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mal values, and the optimal solution sets of (SDP) and (P) in terms of a Lipschitz

constant of the objective function, the size of perturbation, and an upper bound for
the condition number of the convex system that defines the feasible set of (SDP).
Finally, we use the results to obtain an exact penalty function for (SDP) along

with a lower bound for penalty parameters, and we apply the results to a class of
statistical problems.

The constraint system for (SDP) is equivalent to a convex inequality system.
Error bounds for convex inequality systems have received increasing attention in
the recent literature due to their important roles in the sensitivity analysis of convex
programming and the convergence analysis of iterative algorithms [3—6]. The paper
of Lewis and Pang [6] gives an excellent survey on this active research area, and in
which one can find many very interesting new results.

Throughout this paper, we use the following notation.

For any symmetric matriyP, let S(P) be the feasible set of proble@®), and
o(x,S(P)) = max{—Amin[B(x)+ Bp— P],0}. It is clear that S(P) =
{x| — Amin[B(x) + Bo — P] < 0}. Let V(P), X(P), and X.(P) denote the opti-
mal value, optimal solution set, ardoptimal solution set of P) respectively,
ie.,, V(P) = inf{f(x) | x e S(P)}, X(P) = argmin{f(x)| x € S(P)}, and
X (P) = {xeSP)| f(x) L V(P)+¢€}, wheree > 0. We will use the vec-
tor 2-norm and the matrix 2-norm for a vector and a matrix respectively, which
are denoted by - |. The unit ball inR”" is denoted byB", and the ball with
radiusy is denoted by B". For any honempty closed convex Setetd(x, S) =
min{|lx — y||| y € S} denote the Euclidean distance from anto S. Given non-
empty closed convex sefg andsS; in R”, the Hausdorff distance between them is
defined as

d (81, S2) = maxy supd(x, S2), supd(x, S1) ¢ .
x€eS1 x€So

When S(P) is nhonempty, the condition number of the systetmin[B(x) +
Bo — P] < Ois defined as [7, 8]

K(P)= sup dx, S(P)) .
x¢s(P) —Amin[B(x) + Bo — P]

When K (P) is finite, it is the smallest positive scalarsuch that the following
global error bound foS(P) holds.

d(z, S(P)) < tp(x, S(P)), forallzeR". @

The above inequality bounds the distance between any poitR"” and S(P)
in terms of a constant multiple of the residual functjof, S(P)). WhenK (P) is
‘small’, for anyz, d(z, S(P)) is small whenevep(z, S(P)) is small. The following
example shows tha (P) can be less than 1. Whe(x) + By = 2x + 1, itis easy
to see thak (P) = 1/2.
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2. Error bounds

We start with a general global error bound result for the following convex inequal-
ity system.

h(x) <0, xeC, 2

whereh : R" — R is a finite convex function, and is a nonempty closed convex
set. LetS be the set of solutions to the system (2), and supposes tisatonempty.
The following proposition provides sufficient conditions under whigh, S) can
be bounded by the sum obmputableconstant multiples ofl (z, C) and[k(2)],,
where[a],. = maXa, 0}.

PROPOSITION 2.1.Consider the system (2). Suppose thét Lipschitz contin-
uous onR”™ with a Lipschitz constant, and that there is a positive scalasr such
that

d(z,S) < ylh(z)]y forallzeC. ()
Then
d(z,8) < (yl+1)d(z,C) + y[h(z)]y forall z € R". (4)

In particular, if there exists a unit vectar € C* and a positive scalat such
that 2> (1) < —t 1, wherehr™ and C* denote the recession function/oind the
recession cone af respectively, then (3) and (4) hold with= z.

Proof. For anyz € R” but not inS, let z¢ be the projection of onto C, andz
be the projection ofc onto S. It is clear that

d(z,8) <lz -zl < lz = zcl + lzc — 2l = d(z, C) + d(zc, S).
Sincezc € C, by (3), we have

d(zc, S) < y[hzOls < y[h@1y + vz — zcl = y[h(@)]4 + y1d(z, ©),

where the second inequality follows from the fact thaan be used as a Lipschitz
constant fofa(-)]. onRR". Thus (4) holds. The last part follows from Theorem 2.3
in [9]. O

REMARK . (a) Recently, Lewis and Pang have proved the existence of a global
error bound of the kind (4) under weaker assumptions than those in Proposition 2.1,
(Corollary 2(e) in [6]).

(b) A Lipschitz constantfor 4(x) = —Amin[ B(x)+ Bol is «/n maxi<;<,{| Bil s}
where| - |7 is the Frobenious norm (Corollary A.5 in [10]).

Motivated by a class of practical problems in statistics [11], we make the fol-
lowing assumption on the constraint system. Under this assumption, Proposition
2.1 can be used to derive useful error bounds for (SDP).
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ASSUMPTION 1. There exists a unit vectdr € R” such thathin[B(x)] =
71> 0.

—Amin[B(-)] is positively homogeneous and convex [10]. Assumption 1 implies
that the recession functiorAmin[B(-)] of —Amin[B(-) + Bg] satisfies the Slater
condition. ThusS(P) is unbounded for any symmetric matriX. For patterned
covariance matrix problems [11], one can easily find @atisfying Assumption 1
(see examples in Section 3.2). For a general semidefinite programming problem,
one can find art satisfying Assumption 1 by minimizing Amin[B(-)], if such an
X exits.

A consequence of Proposition 2.1 is the following corollary which can also be
derived from Theorem 2 in [12].

COROLLARY 2.1. Suppose that Assumption 1 is satisfied. Then for any symmet-
ric matrix P,

d(x,S(P)) < tp(x,S(P)) forall x € R".

In view of Corollary 2.1, we immediately have an upper bound for the Hausdorff
distance betweeSi(P) andS(Q) in terms ofr and the distance betweéhand Q.

THEOREM 2.1. If Assumption 1 is satisfied, then for any symmetric matriges
andQ,

dos (S(P), S(Q)) < TP — QI

Proof. It suffices to show thai(x, S(P)) < 7| P — Q| foranyx € S(Q). From
Corollary 2.1,

d(x, S(P)) < tp(x, S(P)) = max{—Amin[B(x) + Bo — P], 0} .

As —imin[-] is positively homogeneous and convex, angh[B(x) + Bo — Q] >
0, we have

—Amin [B(x) + Bo — P] < —Amin[B(x) + Bo — Q] — Amin[Q — P]
< —)\min[Q — P]l = Amad P — Q]
<P —QJ.
It follows thatd(x, S(P)) < t|P — Q| for anyx € S(Q) and this completes the
proof. O

A consequence of Theorem 2.1 on the optimal value of (P) is the following
proposition. Note that a finite convex function is Lipschitz continuous on any
compact set ifR” [13, Theorem 10.4].
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PROPOSITION 2.2.If Assumption 1 is satisfied, then for a®y Q with |P —
Q| < ! and any bounded sétsuch thatX (P)N S # @ and X (Q)N S # ¥, we
have

[V(P) —V(O)| < tLgsip | P — O,

whereLg,g» is a Lipschitz constant of on S + B”.
Proof.Letx’ € X(P)N S,x” € X(Q) N S, andx* € S(Q) such that

Ix" = x*| = d(x', S(Q)). (5)
By Theorem 2.1||x" — x*|| < 7|P — Q| < 1 and thusc* € S + B”. It follows that
V(Q)= (") < f(x) = fX)+ (F(x™) = f(xXN)
< V(P)+ tLsimn | P — Q.
Similarly, V(P) < V(Q) + tLgyp:| P — Q|. The result follows. a
An important class of problems in semidefinite programming are problems with
linear objective functions. Now we study this case and assumefthat= ¢’ x.

We first state the following lemma on the compactnesX @P). Its proof can be
easily derived from Theorem 27.1 in [13].

LEMMA 2.1. If f(x) = ¢’x > 0wheneverB(x) > 0, then for any symmetric
matrix P, the solution seX (P) of (P) is nonempty and bounded.

Since a linear function” x has a uniform Lipschitz constajtt| for all bounded
sets, by Proposition 2.2 and Lemma 2.1, we have the following theorem.

THEOREM 2.2. If Assumption 1 is satisfied? — Q| < r~%, and f(x) = ¢Tx
satisfies the conditions stated in Lemma 2.1, then
(a) for any symmetric matriceB and Q, |[V(P) — V(Q)| < tlc|IP — Ql;
(b) for any symmetric matrice® and Q with [P — Q| < e(4t|c|)~2, any
givene > 0,and0 < n < €/2, SUP.cx, (o) d(x, Xe(P)) < TP — Q.
Proof. Part (a) follows from Proposition 2.2 and Lemma 2.1. To prove (b), let
x € X,(Q). From part (a), we have

x <VQ)+n < V(P) +TlcllP — QI + 1. (6)
Choosex* € S(P) such thafjx — x*| = d(x, S(P)). By Theorem 2.1,

Ix — x* < do(S(Q), S(P)) < T| P — Q].
It follows from (6) that

't <elx + el — x|
SV(P)+n+2t|cllP — QI
<
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which means that* € X.(P). Thusd(x, X.(P)) < t|P — Q]| for all x €
X, (0). O

In the rest of this section, we make the following assumption on the objective
function.

ASSUMPTION 2. f is continuously differentiable o®”, and there exist con-
stantse > 0 andB > 1 such that for alk’, x” € R"

f(x’) _ f(x//) 2 Vf(x//)T(x/ _x//) —i—a||x’ —X””ﬂ.

For example, a strictly convex quadratic function satisfies Assumption 2 with
B = 2 anda = Amin[V2f(x)/2]. It is not difficult to verify that if f satisfies
Assumption 2, thery has the following properties.

() f is strictly convex orR”.

(i) For any nonempty compact convex sgtf is Lipschitz continuous oIy

with the Lipschitz constank s = maXx.cs |V f (x)].
(iii) For any real numbey, the sef{x| f (x) < y}is closed and bounded.
(iv) For any nonempty closed convex sktarg mincs f (x) is a singleton.

LEMMA 2.2. For anyz € R”, the set{x|f(x) < f(z) + 1} is contained inz +
uB”, where

u=max{ (227" (22 v 1)) @)
Proof. If there is anx in {x|f(x) < f(z) + 1}, but not inz + uB”", then by
Assumption 2,
12O -f@2V '@ -2 +alf -z’ (®)
We may assume that f (z) # 0, for otherwise, we would have
1> (@)~ f@ > ali—z)f > )" =2 ©)

It follows from (7) and (8) that

1 IWV@NE=—z V@I
X -z~ I1% —z|# 1% — z|f-1
IV £l IV £l
s> ————>0 - ————————
ph=1 207 V(@)

Hence,|x — z| < (Zorl)w < u, which contradicts the hypothesis that¢
z + uB”". O
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THEOREM 2.3. Let z be a feasible solution ofSDP), andL; be a Lipschitz
constant of f on z + (u + 1)B”, whereu is defined by(7) in Lemma 2.2. If
Assumption 1 is satisfied amaax{| P, | Q|} < 1/2min{r r*lL;Ll}, then

@ V(P) = V(Q)| < tLzlP — OJ;

(b) 1X(P) — X(Q)I < k|P — Q|"F, wherek = (2t L™ + v (min{z 1,

T*lLELl})lfl/ﬂ.
Proof. Choosex” € S(P) such thatlz — x”| = d(z, S(P)). By Theorem 2.1,
Iz — x"| < ds(S(0), S(P)) < T|P]. (10)

As t|P| < 1/2 andf is Lipschitz continuous op + (u + 1)B” with a Lipschitz
constantL;, we have that” € z + B" C z + (n + 1D)B” and

fFXP) L &) =f@+ (&)= f2)
< f@Q+TLa|PI< f(2)+ 1

From Lemma 2.2,
X(P) € z+ uB". (1D

Similarly, X (Q) € z + uB". Part (a) thus follows from Proposition 2.2.
It remains to prove part (b). Choosé € S(Q) such that|X(P) — x| =
d(X(P), S(Q)). From Theorem 2.1 and the assumptionfand Q,

IX(P) — X'l <dw(S(P), S(Q) <t|P-0Q]<1 12)
From (11) and (12),
Ix' =zl < Ix" = X(P)| + 1X(P) —z| < 1+ i, (13)

which implies thate’ € z + (1 + 1)B”. Hence,

alx’ = X(Q)F < f(x) = f(X(Q) (14)
= (f(x) — F(X(P)) + (V(P) = V(Q))
<2tLy|P - Ql, (15)

where (14) is from Assumption 2 and the optimality Xt Q), and (15) is from
(12), (13) and part (a). Therefore,

IX(Q) — X(P)| < |x' — X(Q)| + |x' — X(P)]|
< @tLza Y|P - oYP + 1P - Q| (16)
= k|P — QIY?,

where (16) is from (15) and (12). O
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3. Applications
3.1. EXACT PENALTY FUNCTIONS

An important class of solution methods in optimization are exact penalty function
methods, which convert a given constrained nonlinear programming problem into
an equivalent unconstrained problem or into a problem with simple constraints.
But, if a lower bound of penalty parameters is unknown, then one must solve
a sequence of unconstrained problems with increasing penalty parameters and
this can cause ill-conditioning and numerical difficulties. Here we use the results
from Section 2 to obtain an exact penalty function and a lower bound of penalty
parameters for (SDP). We consider the following unconstrained penalty problem.

(@) minimize h(x) = f(x) + B max—Amin[B(x) + Bgl, 0} overR”",

whereg > 0 is a penalty parameter. In view of Corollary 2.1, it is not difficult to
prove the following theorem, which gives a computable lower boung for

THEOREM 3.1. Suppose thaf is convex and Lipschitz continuous Bri with a
Lipschitz constant (e.g., an affine function or a convex piecewise linear function).
If Assumption 1 is satisfied am®l > t L, then a vector is an optimal solution of
(SDP) if and only if it is an optimal solution @2).

REMARK 3.1. Under different assumptions [14], Warga shows that there exist
constants: and N such that the constrained problem: minimigéx), subject to
g(x) = 0, x € C can be reduced to an unconstrained problem: mininfige +
clg() YN overx e C, whereC must be compact (see [14] for details). Due to
the special structure of our problem, we are able to obtainraputablepenalty
parameter > tL along withN = 1.

For example, consider the problem of minimizifigr) = maxc] x +b1, c3 x +
b} subject t03 "2, (x);B; + By > 0, wherec; = (3,1), ¢ = (1, —2), by = 2,
by =0,

10 01 13
B]_:(O 1), Bz=(1o> and Bo=<3 1)

With the choice oft = (1, 0), we havermin[B(X)] = 1 = 1. SinceL = /10,
for the unconstrained problen®, we can choose a penalty parametes +/10.

3.2. PATTERNED COVARIANCE MATRICES

Patterned covariance matrices arise naturally from statistical models in the phys-
ical, biological, psychological, and social sciences [11]. For example, in a model
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for meteorological measurements, the covariance matrix exhibits the pattern

ap ay az a4z --- 4z ai

a ap ay dz --- AaAz dap

az ay ap ai --- 44 4as
Y=

ay a3 d4q das --- do ai

ay az dz da --- di do

which is a circulant. In models for demography and migration, the covariance
matrices exhibit the patterns

aiy az az as a

a; a as as 1 dz d2 43 d4

ay ai dz aiz da
az ai ads dag

Yo = and Ya=\|ax a; a1 az aa
as aiz dig ag

as ajz adsz ay ap
asg a4q ag ax

asg a4q ag az aj

When the underlying distribution is not normal, one needs to find a positive semi-
definite matrix having the required pattern and closest to a given sample covariance
matrix [11]. For instance, if the covariance matrix has the pati&rnthen one
needs to solve the following semidefinite programming problem

2
(SDP  minimize

4
Z Bi(x); — B

i=1

F

4
subject to Z Bi(x); >0,
i=1

whereB is the given sample covariance matrix, and

1000 010
0100 1000
Bi=loo010l° B2=|o000o0|"
0001 0000
0010 0001
0010 0001
Bs=11100" B=|o0001
0000 1110
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In practice, some numerical methods actually solve the following perturbed
problem [11]

2

4
Z Bi(x); — B

i=1

(P) minimize

F

4
subject to Z Bi(x); — P > 0.
i=1

Letting (x); = 1, and(x); = O fori = 2, 3,4, we haveB(x) = I and thus a
constantr satisfying Assumption 1 is = 1. From Theorem 2.1, we know that
ds(S(P), S(Q)) < |P— Q] i.e., the Hausdorff distance between the feasible sets
of these problems is bounded p§# — Q|. Now let

4000 Sty B(i. i)
loz2o00 - 2B(L 2)
D=loo0a0] 29 ¢=|25m3+523)]|
0006 2% BG,4)

we havef (x) = | Y7, Bi(x); — B|% = x" Dx — 26" x 4+ | B|%, V f (x) = 2Dx —

2¢, and thex and g satisfying Assumption 2 are = 2 andg8 = 2. Usingz = x

as a feasible solution to the unperturbed problem, one can easily verify that the
constantu defined in Lemma 2.2 ig = 8 + 2|c||, and the Lipschitz constart;
defined in Theorem 2.3 i5; = 120+ 26|c|. From Theorem 2.3, we know that if
maxX{|P|, | Ql} < (2404 52|¢])~, then

IV(P) — V(0Q)| < (120+ 26|c])| P — O]
and
IX(P) — X(Q)] < ((120+ 26]¢])*? + (120+ 26c])~*?) | P — QY.

In particular, for a suboptimal solution obtained by settihg= €1, if ¢ < (240+
52|11, then

[V(el) = V(0 < (120+ 26]c])e
and
1X(eD) — X(0)] < ((120+ 26]c)™® + (120+ 26]c]) /%) €2,

Similarly, one can show that = 1 for the pattern&; and X3, and the bounds
for the feasible sets, optimal values, and optimal solutions between (SDP) and (P)
can be computed easily. For a general (SDP), one can find the bounds given by
Theorems 2.1, 2.2 and 2.3 from a vector satisfying Assumption 1 and a feasible
solution to the unperturbed problem.
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There are numerous sensitivity analysis results for convex programming focus-
ing on the existence of quantitative bounds. Because of the special structure of the
problems, we are able to compute these bounds in terms of the problem data. It
is not difficult to extend most of the results in this paper to convex programming
problems where recession functions associated with the constraint systems satisfy
the Slater condition.
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